Modulation of auroral electrojet currents using dual modulated HF beams with ELF phase offset, a potential Dregion ionospheric diagnostic
نویسندگان
چکیده
[1] Experiments at the ionospheric heating facility of the High Frequency Active Auroral Research Program (HAARP) are performed employing dual HF beams amplitude modulated at ELF/VLF with a phase offset between the two modulation waveforms. The amplitude of the observed ELF/VLF waves is strongly dependent on the imposed ELF/VLF phase offset, the modulation waveform, and the orientation of the HF beams. Data from two ground stations are interpreted using simulations of modulated heating power envelopes as well as a comprehensive model of ionospheric ELF/VLF generation. It is found that two colocated vertical beams HF beams excite a single ionospheric ELF/VLF source, but independent ELF/VLF sources can be induced in the ionospheric region above the heater if the HF beams are offset from zenith to intersect at their 3 dB points. Furthermore, the use of two vertical HF beams with ELF phase offset is found to be a potential diagnostic method for the ionospheric D region.
منابع مشابه
On the altitude of the ELF/VLF source region generated during beatwave HF heating experiments
[1] Modulated high frequency (HF, 3–10 MHz) heating of the ionosphere in the presence of the auroral electrojet currents is an effective method for generating extremely low frequency (ELF, 3–3000 Hz) and very low frequency (VLF, 3–30 kHz) radio waves. The amplitudes of ELF/VLF waves generated in this manner depend sensitively on the auroral electrojet current strength, which varies with time. I...
متن کاملAnalysis of time‐of‐arrival observations performed during ELF/VLF wave generation experiments at HAARP
[1] Modulated high frequency (HF) heating of the lower ionosphere in the presence of auroral electrojet currents has become an important method for generating electromagnetic waves in the extremely‐low frequency (ELF) and very‐low frequency (VLF) bands. Recent research efforts focus on improving the efficiency of ELF/VLF wave generation. One method to do so involves the spatial mapping of modul...
متن کاملGeometric modulation: A new, more effective method of steerable ELF/VLF wave generation with continuous HF heating of the lower ionosphere
ELF/VLF waves can be generated via amplitude modulated HF heating of the auroral electrojet, which turns a patch of ionospheric currents into a radiating antenna. A new, more powerful technique, termed `geometric modulation', involves scanning the HF beam in geometric patterns with no power modulation. Utilizing results obtained from the HAARP facility, we show that geometric modulation enhance...
متن کاملObservations of amplitude saturation in ELF/VLF wave generation by modulated HF heating of the auroral electrojet
[1] We present detailed observations of the onset of amplitude saturation in ELF/VLF waves generated via modulated HF heating of naturally-forming, large-scale current systems, such as the auroral electrojet. Broadband ELF/VLF measurements at a ground-based receiver located near the High-Frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska, exhibit variations in si...
متن کاملELF/VLF wave generation using simultaneous CW and modulated HF heating of the ionosphere
[1] Experimental observations of ELF/VLF waves generated using the dual‐beam heating capability of the High frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska, are compared with the predictions of an ionospheric HF heating model that accounts for the simultaneous propagation and absorption of multiple HF beams. The model output is used to assess three properties ...
متن کامل